The retina is a highly specialized neural tissue that senses light and initiates image processing. Although the functional organisation of specific cells within the retina has been well-studied, the molecular profile of many cell types remains unclear in humans. To comprehensively profile cell types in the human retina, we performed single cell RNA-sequencing on 20,009 cells obtained post-mortem from three donors and compiled a reference transcriptome atlas. Using unsupervised clustering analysis, we identified 18 transcriptionally distinct clusters representing all known retinal cells: rod photoreceptors, cone photoreceptors, Müller glia cells, bipolar cells, amacrine cells, retinal ganglion cells, horizontal cells, retinal astrocytes and microglia. Notably, our data captured molecular profiles for healthy and early degenerating rod photoreceptors, and revealed a novel role of MALAT1 in putative rod degeneration. We also demonstrated the use of this retina transcriptome atlas to benchmark pluripotent stem cell-derived cone photoreceptors and an adult Müller glia cell line. This work provides an important reference with unprecedented insights into the transcriptional landscape of human retinal cells, which is fundamental to our understanding of retinal biology and disease.