Protein deglycase DJ‐1 (DJ‐1) is a multifunctional protein involved in various biological processes. However, it is unclear whether DJ‐1 influences atherosclerosis development and plaque stability. Accordingly, we evaluated the influence of DJ‐1 deletion on the progression of atherosclerosis and elucidate the underlying mechanisms. We examine the expression of DJ‐1 in atherosclerotic plaques of human and mouse models which showed that DJ‐1 expression was significantly decreased in human plaques compared with that in healthy vessels. Consistent with this, the DJ‐1 levels were persistently reduced in atherosclerotic lesions of ApoE−/− mice with the increasing time fed by western diet. Furthermore, exposure of vascular smooth muscle cells (VSMCs) to oxidized low‐density lipoprotein down‐regulated DJ‐1 in vitro. The canonical markers of plaque stability and VSMC phenotypes were evaluated in vivo and in vitro. DJ‐1 deficiency in Apoe−/− mice promoted the progression of atherosclerosis and exaggerated plaque instability. Moreover, isolated VSMCs from Apoe−/−DJ‐1−/− mice showed lower expression of contractile markers (α‐smooth muscle actin and calponin) and higher expression of synthetic indicators (osteopontin, vimentin and tropoelastin) and Kruppel‐like factor 4 (KLF4) by comparison with Apoe−/−DJ‐1+/+ mice. Furthermore, genetic inhibition of KLF4 counteracted the adverse effects of DJ‐1 deletion. Therefore, our results showed that DJ‐1 deletion caused phenotype switching of VSMCs and exacerbated atherosclerotic plaque instability in a KLF4‐dependent manner.