The poplar alkaline hydrogen peroxide mechanical pulp (APMP) with the lignin content of 24.63 % was used as raw material, which with lignin content of 10.04 %, 6.33 %, 3.82 %, and 1.14 % were obtained by the acid sodium chlorite method for 1–4 hours respectively. Then, different lignin content APMP were micro-nano processing treated with acidolysis (6.5 M, 9.8 M) or ultra-granular grinding respectively. Afterwards, poplar bleached chemical pulp (BCP) was prepared micro-nano cellulose under the same conditions as the APMP. Then, compared the data of the particle size, specific surface area, fiber morphology and zeta potential of suspensions between micro-nano cellulose products. The results show that the presence of a small amount of lignin (1–4 %) in APMP does not affect the preparation of different scales nano cellulose under different acid concentration conditions. When the lignin content is reduced to below 2 %, the acidolysis is more uniform, stable, and well-dispersed compared to BCP products; when the APMP is processed by the ultra-granular grinding, the higher lignin content, the more obvious cutting effect in the fiber length direction. The characteristics and feasibility of the preparation of micro-nano cellulose by the acidolysis and ultra-granular grinding using APMP with varying degrees of delignification are compared.