We study the controlled introduction of defects in GaMnAs by irradiating the samples with energetic ion beams, which modify the magnetic properties of the DMS. Our study focuses on the low-carrier-density regime, starting with as-grown GaMnAs films and decreasing even further the number of carriers, through a sequence of irradiation doses. We did a systematic study of magnetization as a function of temperature and of the irradiation ion dose. We also performed insitu room temperature resistivity measurements as a function of the ion dose. We observe that both magnetic and transport properties of the samples can be experimentally manipulated by controlling the ion-beam parameters. For highly irradiated samples, the magnetic measurements indicate the formation of magnetic clusters together with a transition to an insulating state. The experimental data are compared with mean-field calculations for magnetization. The independent control of disorder and carrier density in the calculations allows further insight on the individual role of this two factors in the ion-beam-induced modification of GaMnAs.