We report the detailed XMCQDPT2/cc-pVTZ study of trans-cis photoisomerization in one of the core systems of both experimental and computational photochemistry-the stilbene molecule. For the first time, the potential energy surface (PES) of the S1 state has been directly optimized and scanned using a multistate multiconfiguration second-order perturbation theory. We characterize the trans-stilbene, pyramidalized (phantom), and DHP-cis-stilbene geometric domains of the S1 state and describe their stationary points including the transition states between them, as well as S1/S0 intersections. Also reported are the minima and the activation barriers in the ground state. Our calculations correctly predict the kinetic isotope effect due to H/D exchange at ethylenic hydrogens, the dynamic behavior of excited cis-stilbene, and trans-cis branching ratio after relaxation to S0 through a rather unsymmetric conical intersection. In general, the XMCQDPT2 results confirm the qualitative adequacy of the TDDFT (especially SF-TDDFT) picture of the excited stilbene but also reveal quantitative discrepancies that deserve further exploration.