Abstract. Filtration membrane is an essential part in an artificial kidney device functioning as a channel to pass through all wastes from blood. This paper focuses on the effect of dimension, shape, thickness, material and applied pressure on the artificial filtration membrane to be used in terms of its mechanical strength. Studied parameters important for consideration of an actual filtration membrane design for the artificial kidney. The stress and deflection at the center of the membrane is studied using COMSOL Multiphysics simulation tool using "Solid Mechanics" physics module. The results shows that maximum deflection happens at the center of the membrane. Higher applied pressure causes more membrane deflection from the initial state while thicker membrane shows a better withstand towards applied pressure. Circle shape pores has lower stress and deflection compared to slit pores whereas filtration pore size does not give much impact on the stress and deflection of the membrane. Silicon Nitride filtration membrane is the most robust compared to Silicon and Silicon Dioxide membrane evaluated. To conclude, thicker Silicon Nitride membrane with arrays of uniform circle pores will result to a more stable filtration membrane that would be able to withstand simulated blood stream pressure of 10 until 55 mmHg in an artificial kidney.