Ullmann's Encyclopedia of Industrial Chemistry 2000
DOI: 10.1002/14356007.a14_627
|View full text |Cite
|
Sign up to set email alerts
|

Isoprene

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
2

Citation Types

0
14
0
4

Year Published

2002
2002
2022
2022

Publication Types

Select...
8

Relationship

0
8

Authors

Journals

citations
Cited by 17 publications
(18 citation statements)
references
References 59 publications
0
14
0
4
Order By: Relevance
“…Thus, the emission kinetics of isoprene and monoterpenes may not necessarily be identical. In particular, the saturated partial pressure of monoterpenoids on the order of 0.02–0.6 kPa at 25°C is considerably lower than that of isoprene of 73.6 kPa at 25°C [ Mackay and Shiu , 1981; Howard and Meylan , 1997; Daubert et al , 1998; Weitz and Loser , 1998] (see also R. L. Brown and S. E. Stein, Boiling point data, in NIST Chemistry WebBook, NIST Standard Reference Database Number 69, edited by P. J. Linstrom and W. G. Mallard, National Institute of Standards and Technology, Gaithersburg, Md., available at http://webbook.nist.gov, July, 2001) and monoterpene molecules are also larger and diffuse more slowly than the isoprene molecules. This suggests that depending on the partitioning of diffusion limitations between lipid, liquid, and gas phases, the monoterpenoid emission rates may occasionally be limited by volatility and intraleaf diffusion also in species lacking specialized foliage monoterpene‐storage compartments.…”
Section: Introductionmentioning
confidence: 99%
“…Thus, the emission kinetics of isoprene and monoterpenes may not necessarily be identical. In particular, the saturated partial pressure of monoterpenoids on the order of 0.02–0.6 kPa at 25°C is considerably lower than that of isoprene of 73.6 kPa at 25°C [ Mackay and Shiu , 1981; Howard and Meylan , 1997; Daubert et al , 1998; Weitz and Loser , 1998] (see also R. L. Brown and S. E. Stein, Boiling point data, in NIST Chemistry WebBook, NIST Standard Reference Database Number 69, edited by P. J. Linstrom and W. G. Mallard, National Institute of Standards and Technology, Gaithersburg, Md., available at http://webbook.nist.gov, July, 2001) and monoterpene molecules are also larger and diffuse more slowly than the isoprene molecules. This suggests that depending on the partitioning of diffusion limitations between lipid, liquid, and gas phases, the monoterpenoid emission rates may occasionally be limited by volatility and intraleaf diffusion also in species lacking specialized foliage monoterpene‐storage compartments.…”
Section: Introductionmentioning
confidence: 99%
“…Auch in der Kooperation von Michelin mit Amyris wird an dem direkten Weg zu Isopren gearbeitet [65]. Hierbei entsteht 2-Methyl-1-Buten, das anschließend dehydriert wird [62]; es werden Ausbeuten von 70 -80 % berichtet [66]. Hierbei entsteht 2-Methyl-1-Buten, das anschließend dehydriert wird [62]; es werden Ausbeuten von 70 -80 % berichtet [66].…”
Section: Butadienunclassified
“…Darüber hinaus gibt es eine ganze Reihe weiterer Wege zu Isopren, unter anderem beispielsweise durch Umsetzung von Ethylen mit Propen in Toluol in Gegenwart von Triethylaluminium. Nach einem Isomerisierungsschritt wird das Intermediat 2-Methyl-2-penten bei über 650°C unter Methan-Abspaltung in das Isopren mit einer Gesamtselektivität von 50 % überführt [62]. Dieses Verfahren wurde nie industriell eingesetzt, im Gegensatz zur Isopren-Herstellung aus Acetylen und Aceton: Hierbei werden die beiden Edukte im ersten Schritt in flüssigem Ammoniak bei 10 -40°C zu 2-Methyl-but-3-in-2-ol in Gegenwart von KOH umgesetzt.…”
Section: Butadienunclassified
“…As an ubiquitous and important family of molecules, terpenes, provide flavors, fragrances, medicines, and commercial products. 1 Although terpenes possess a seemingly endless variety of architectural complexities, nature is able to utilize simple five-carbon moieties to build the tens of thousands of different members of the terpene family. 2 The biosynthesis of terpenes often occurs in a unified fashion as a “two-phase” process: 3 (1) in the “cyclase” phase, small linear hydrocarbon phosphate building blocks are coupled together, followed by both enzymatic and nonenzymatic cyclizations and rearrangements; (2) in the “oxidase” phase, the oxidations of alkenes and carbon–hydrogen bonds result in large structural diversity.…”
Section: Introductionmentioning
confidence: 99%