Isoprenoid biosynthesis is an important area for anti-infective drug development and one target is IspH, (E)-1-hydroxy-2-methyl-but-2-enyl 4-diphosphate (HMBPP) reductase, which forms isopentenyl diphosphate and dimethylallyl diphosphate from HMBPP in a 2H+/2e− reduction. IspH contains a 4Fe-4S cluster and here, we first investigated how small molecules can bind to the cluster using HYSCORE and NRVS spectroscopies. The results of these as well as other structural and spectroscopic investigations led to the conclusion that in most cases, ligands bind to IspH 4Fe-4S clusters via η1 coordination, forming tetrahedral geometries at the unique 4th Fe, ligand side-chains preventing further ligand (e.g. H2O, O2) binding. Based on these ideas, we sought using in silico methods to find drug-like inhibitors that might occupy the HMBPP substrate binding pocket and bind to Fe, leading to the discovery of a barbituric acid analog having a Ki ~ 500 nM against Pseudomonas aeruginosa IspH.