We aimed to assess the potential growth-promoting effects of ginger and cinnamon mixtures (GCM) on intestinal bacteria and their anti-inflammatory effects in a cellular model of intestinal inflammation. Bifidobacterium longum, Lactobacillus sp., and Lactobacillus acidophilus served as intestinal bacteria. Further, in the inflammatory co-culture model, Caco-2 cells cocultured with RAW264.7 cells were treated with GCM before the addition of lipopolysaccharide (LPS) to induce inflammation in RAW264.7 cells. Addition of GCM to modified Eggerth Gagnon media at a ginger:cinnamon ratio of 1:5 increased the growth of B. longum, Lactobacillus sp., and L. acidophilus compared to that of the control. In a cellular model, compared to LPS-treated groups, GCM-treated groups maintained high transepithelial electrical resistance at ginger:cinnamon ratios of 1:1, 1:3, 1:5, and 1:7 and decreased the tight junction permeability at 3:1, 1:1, 1:3, and 1:5 ratios, similar to that shown by the control groups. In addition, GCM-treated groups showed decreased levels of nitrite at 1:1, 1:5, and 1:7 ginger:cinnamon ratios. Based on these results, it can be concluded that among the various combinations of GCM, the ginger:cinnamon ratio of 1:5 is the optimal composite ratio that shows positive effects on the intestinal beneficial bacteria and in anti-inflammation.