“…To reduce this mutual coupling, various mutual coupling (MC) reduction or decoupling, or isolation enhancement techniques were introduced in the literature. They are neutralization line (NL) [2], decoupling network (DN) [3][4][5][6], metasurface, metamaterial (MTM) [7], electronic band gap (EBG) [8,9], frequency selective surface (FSS), photonic band gap (PBG), optically transparent structures [10], split ring resonator (SRR), complementary split ring resonator (CSRR) [11,12], dielectric resonator antenna (DRA), ground plane modification (GPM), defected ground structure (DGS) [13,14], slots [15][16][17][18], band notching techniques implementation, parasitic elements, metal strips, shorting pins, insertion of stubs [19][20][21], frequency reconfigurable [22,23], implementing PIN diodes, microstrip open loop resonator (MOLR), quasi self complementary antenna (QSCA) [24], inter element spacing [25][26][27][28][29], insertion of slits, fractal structures, modified substrates, locating antennas on different substrate layers, etc. These techniques improve impedance matching, enhance gain, efficiency, and increase the complexity of antenna design.…”