The native peels of two cheap, locally available adsorbents, watermelon (PWM) and water chestnuts (PWC), were chemically processed with different chemicals as modifying agents for the determination and assessment of their adsorption ability for the removal and clearance of harmful, venomous, and pernicious Congo red (CGR), as an acidic nature anionic dye, from the aqueous system. In successive batch experiments, the citric acid-treated peels CPWM and CPWC have shown more promising adsorption performance than their raw and untreated peel counterparts due to the availability of additional adsorption active binding sites evidenced through FT-IR and SEM characterizations. In the Langmuir and Temkin models, the correlation coefficients (
R
2
) for the adsorptive removal of CGR on CPWM, PWM, CPWC, and PWC are very close to unity, 0.99 for each case of adsorption performance. Furthermore, the
q
max
nonlinear statistical results for the elimination of CGR on citric acid-treated adsorbents (CPWM and CPWC) are 8.3 and 7.95 mg/g whereas for their unmodified forms (PWM and PWC) are 2.23 and 4.32 mg/g, respectively, reflecting homogenous and monolayer adsorption mechanism. The greater values of
B
T
1.4 and 1.3 J/mole, for adsorptive removal of dye on CPWM and CPWC, respectively, as compared to their unmodified forms PWM and PWC which are 0.53 and 0.55 J/mole, respectively, indicate the stronger adsorbate-adsorbent associations. The mechanism follows the pseudo second order in the better mode, while thermodynamic statics for ΔH0,ΔG0, ΔS0, and ΔE0, indicate spontaneous and exothermic behavior of adsorption. This study tends to suggest that citric acid-modified adsorbents CPWM and CPWC may indeed be exploited efficiently to eliminate Congo red dye from wastewater.