Pigs are a primary source of meat, accounting for over 30% of global consumption. Consumers’ preferences are determined by health considerations, paying more attention to foodstuffs quality, animal welfare, place of origin, and swine feeding regime, and being willing to pay a higher price for a product from a certain geographical region. In this study, the isotopic fingerprints (δ2H, δ18O, and δ13C) and 29 elements of loin pork meat samples were corroborated with chemometric methods to obtain the most important variables that could classify the samples’ geographical origin. δ2H and δ18O values ranged from −71.0 to −21.2‰, and from −9.3 to −2.8‰, respectively. The contents of macro- and micro-essential elements are presented in the following order: K > Na > Mg > Ca > Zn > Fe > Cu > Cr. The LDA model assigned in the initial classification showed 91.4% separation of samples, while for the cross-validation procedure, a percentage of 90% was obtained. δ2H, K, Rb, and Pd were identified as the most representative parameters to differentiate the pork meat samples coming from Romania vs. those from abroad. The mean values of metal concentrations were used to estimate the potential health risks associated with the consumption of pork meat The results showed that none of the analyzed metals (As, Cd, Sn, Pb, Cu, and Zn) pose a carcinogenic risk.