Geological exposures in the Lambert Rift region of East Antarctica comprise scattered coastal outcrops and inland nunataks sporadically protruding through the Antarctic ice sheet from Prydz Bay to the southernmost end of the Prince Charles Mountains. This study utilized airborne magnetic, gravity, and ice radar data to interpret the distribution and architecture of tectonic terranes that are largely buried beneath the thick ice sheet. Free‐air and Bouguer gravity data are highly influenced by the subice and mantle topography, respectively. Gravity stripping facilitated the removal of the effect of ice and Moho, and the residual gravity data set thus obtained for the intermediate crustal level allowed a direct comparison with magnetic data. Interpretation of geophysical data also provided insight into the distribution and geometry of four tectonic blocks: namely, the Vestfold, Beaver, Mawson, and Gamburtsev domains. These tectonic domains are supported by surface observations such as rock descriptions, isotopic data sets, and structural mapping.