Abstract-Ten glass cosmic spherules (CS) from the South Pole water well collection were analyzed by electron microprobe. Nine of them have Fe/Mn and Fe/Mg ratios in the range typical of chondrites. One of them (SP37-3), along with up to six other previously analyzed CS, have nonchondritic Fe/Mn and Fe/Mg ratios that agree well with values typical of either (basaltic) howardite, eucrite, and diogenite (HED) meteorites or Martian basalts, but not of lunar samples. SP37-3 also contains an anorthite relic grain. Anorthite has not previously been reported in cosmic spherules, but is well known in HED meteorites. The much greater frequency of HEDs among hand-sized meteorites suggests but does not prove that HED precursors are more likely for the nonchondritic spherules.We estimate that HED-like micrometeorites constitute ~0.5 ± 0.4% of the total population of micrometeorites in the South Pole water well, a fraction that translates to a flux of 1.6 ± 0.3 × 10 −8 g HED micrometeorites/m 2 -y. The ratio of HED-like objects to carbonaceous objects is about 100 times less in micrometeorites than among hand-size specimens. We infer that the comparative mechanical weakness of carbonaceous precursor materials tends to encourage spherule formation.