In this study we assessed the trophic ecology of bluefin tuna Thunnus thynnus larvae from the Gulf of Mexico, together with the co-occurring larvae of blackfin tuna T. atlanticus, bullet tuna Auxis rochei, and skipjack Katsuwonus pelamis, using both bulk-tissue stable isotope analysis (SIA bulk) and compound-specific analysis of amino acids (CSIA AA). Bulk nitrogen (δ 15 N bulk) and carbon (δ 13 C bulk) values differed significantly among species, suggesting partitioning of resources due to an adaptive process allowing these tunas to share the ecosystem's trophic resources during this early life period. K. pelamis had the largest isotopic niche width, likely due to piscivorous feeding at an earlier age compared to the other species, with an isotopic niche overlap of 17.5% with T. thynnus, 15.8% with T. atlanticus, and 31.2% with A. rochei. This trophic overlap suggests a mix of competition and trophic differentiation among these 4 species of tuna larvae. Higher nitrogen isotopic signatures in preflexion versus postflexion larvae of T. thynnus measured using both SIA bulk and CSIA AA indicate maternal isotopic transmission, as well as 'capital breeder'-like characteristics. In contrast, the nitrogen isotopic ratios of the other 3 species were similar between ontogenetic stages. These observations suggest different breeding strategies within the study area for T. atlanticus, K. pelamis, and A. rochei compared to T. thynnus. No significant differences were observed among the 4 species' trophic positions (TPs) estimated by CSIA AA , whereas a higher TP was observed for T. thynnus by SIA bulk. These differences in TP estimation may be attributed to discrepancies in baseline estimates.