Constraining the mechanisms that control organic matter (OM) reactivity and, thus, degradation, preservation and burial in marine sediments across spatial and temporal scales is key to understanding carbon cycling in the past, present, and future. However, we still lack a quantitative understanding of what controls OM reactivity in marine sediments and, as a result, how to constrain it in global models. To fill this gap, we quantify apparent OM reactivity (i.e., model-derived estimates) by extracting reactive continuum model parameters ( and ) from observed benthic organic carbon and sulfate dynamics across 14 contrasting depositional settings distributed over five distinct benthic provinces. Our analysis shows that the large-scale range in apparent OM reactivity is largely driven by the wide variability in parameter a (10 −3 < < 10 7 ) with a high frequency of values in the range 10 0 < < 10 4 years. In contrast, inversely determined -values fall within a narrow range (0.1 < < 0.2). Results also show that the variability in parameter and, thus, in apparent OM reactivity is a function of the whole depositional environment, rather than the traditionally proposed, single environmental controls (e.g., water depth, sedimentation rate, OM fluxes). Thus, we caution against the simplifying use of a single environmental predictor for apparent OM reactivity beyond a specific local environmental context. In addition, diagenetic model results also indicate that, while