The isotopic distributions and recoil velocities of the fission fragments produced in the spallation reaction 208 P b + p at 500 A MeV have been measured using the inverse-kinematics technique, a lead beam onto a liquid-hydrogen target, and the high-resolution spectrometer FRS at GSI. The shapes of the different distributions are found in good agreement with previously published data while the deduced total fission cross-section is higher than expected from existing systematics and some previous measurements. From the experimental data, the characteristics of the average fissioning system can be reconstructed in charge, mass and excitation energy, and the average number of post-fission neutrons can be inferred. The results are also compared to different models describing the spallation reaction. The intranuclear cascade code INCL4 followed by the de-excitation code ABLA is shown to describe reasonably well the evolution of the isotopic distribution shapes between 500 and 1000 A MeV.