To further improve the hardness of the laser cladding layer on the surface of the vermicular graphite cast iron, the structural parameters of the laser cladding Co-base were designed and optimized, and the properties of the clad layer were evaluated using optical microscopy (OM), scanning electron microscopy (SEM), energy spectroscopy (EDS), X-ray diffractometer (XRD), electrochemical workstation, and friction wear equipment. The results show that the average hardness of the molten layer of Ni and Co-based composite cladding layer is 504 HV0.5, which is 0.64 times that of the Co-based cladding layer due to the combined factors of Ni-Cr-Fe equivalent to the dilution of the Ni-based cladding layer to the Co-based cladding layer. Due to the potential difference of the Ni, Cr, and Co elements on the surface of the cladding layer, the self-corrosion potential of the Ni and Co-based composite cladding layer is 1.08 times that of the Co-based cladding layer, and the self-corrosion current density is 0.51 times. Laser cladding Co-based cladding layer has high corrosion resistance. Under the influence of plastic deformation and oxidative wear of the cladding layer of the Ni and Co-based composite cladding layer, the wear amount of the cladding layer of the Ni and Co-based composite cladding layer is less.