In this article, we show that the standard vector-valued generalization of a generalized grey Brownian motion (ggBm) has independent components if and only if it is a fractional Brownian motion. In order to extend ggBm with independent components, we introduce a vector-valued generalized grey Brownian motion (vggBm). The characteristic function of the corresponding measure is introduced as the product of the characteristic functions of the one-dimensional case. We show that for this measure, the Appell system and a calculus of generalized functions or distributions are accessible. We characterize these distributions with suitable transformations and give a
d
d
-dimensional Donsker’s delta function as an example for such distributions. From there, we show the existence of local times and self-intersection local times of vggBm as distributions under some constraints, and compute their corresponding generalized expectations. At the end, we solve a system of linear SDEs driven by a vggBm noise in
d
d
dimensions.