For study of quantum self-frictional (SF) relativistic nucleoseed spinor-type tensor (NSST) field theory of nature (SF-NSST atomic-molecular-nuclear and cosmic-universe systems) we use the complete orthogonal basis sets of22s+1-component column-matrices type SFΨnljmjδ⁎s-relativistic NSST orbitals (Ψδ⁎s-RNSSTO) and SFXnljmjs-relativistic Slater NSST orbitals (Xs-RSNSSTO) through theψnlmlδ⁎-nonrelativistic scalar orbitals (ψδ⁎-NSO) andχnlml-nonrelativistic Slater type orbitals (χ-NSTO), respectively. Hereδ⁎=pl⁎orδ⁎=α⁎andpl⁎=2l+2-α⁎, α⁎are the integer(α⁎=α, -∞<α≤2) or noninteger(α⁎≠α, -∞<α⁎<3) SF quantum numbers, wheres=0,1/2,1,3/2,2,…. We notice that the nonrelativisticψδ⁎-NSO andχ-NSTO orbitals themselves are obtained from the relativisticΨδ⁎s-RNSSTO andXs-RSNSSTO functions fors=0, respectively. The column-matrices-type SFY1jmjls-RNSST harmonics (Y1ls-RNSSTH) andY2jmjls-modified NSSTH (Y2ls-MNSSTH) functions for arbitrary spinsintroduced by the author in the previous papers are also used. The one- and two-center one-range addition theorems forψδ⁎-NSO and nonintegern χ-NSTO orbitals are presented. The quantum SF relativistic nonperturbative theory forVnljmjδ⁎-RNSST potentials (Vδ⁎-RNSSTP) and their derivatives is also suggested. To study the transportations of mass and momentum in nature the quantum SF relativistic NSST gravitational photon (gph) withs=1is introduced.