This paper proposes a brain-inspired navigation model based on absolute heading for the autonomous navigation of unmanned platforms. The proposed model combined the sand ant’s strategy of acquiring absolute heading from the sky environment and the brain-inspired navigation system, which is closer to the navigation mechanism of migratory animals. Firstly, a brain-inspired grid cell network model and an absolute heading-based head-direction cell network model were constructed based on the continuous attractor network (CAN). Then, an absolute heading-based environmental vision template was constructed using the line scan intensity distribution curve, and the path integration error was corrected using the environmental vision template. Finally, a topological cognitive node was constructed according to the grid cell, the head direction cell, the environmental visual template, the absolute heading information, and the position information. Numerous topological nodes formed the absolute heading-based topological map. The model is a topological navigation method not limited to strict geometric space scale, and its position and absolute heading are decoupled. The experimental results showed that the proposed model is superior to the other methods in terms of the accuracy of visual template recognition, as well as the accuracy and topology consistency of the constructed environment topology map.