Background/Objectives: Carbapenem resistance poses a significant threat to public health by undermining the efficacy of one of the last lines of antibiotic defense. Addressing this challenge requires innovative approaches that can enhance our understanding and ability to combat resistant pathogens. This review aims to explore the integration of machine learning (ML) and epidemiological approaches to understand, predict, and combat carbapenem-resistant pathogens. It examines how leveraging large datasets and advanced computational techniques can identify patterns, predict outbreaks, and inform targeted intervention strategies. Methods: The review synthesizes current knowledge on the mechanisms of carbapenem resistance, highlights the strengths and limitations of traditional epidemiological methods, and evaluates the transformative potential of ML. Real-world applications and case studies are used to demonstrate the practical benefits of combining ML and epidemiology. Technical and ethical challenges, such as data quality, model interpretability, and biases, are also addressed, with recommendations provided for overcoming these obstacles. Results: By integrating ML with epidemiological analysis, significant improvements can be made in predictive accuracy, identifying novel patterns in disease transmission, and designing effective public health interventions. Case studies illustrate the benefits of interdisciplinary collaboration in tackling carbapenem resistance, though challenges such as model interpretability and data biases must be managed. Conclusions: The combination of ML and epidemiology holds great promise for enhancing our capacity to predict and prevent carbapenem-resistant infections. Future research should focus on overcoming technical and ethical challenges to fully realize the potential of these approaches. Interdisciplinary collaboration is key to developing sustainable strategies to combat antimicrobial resistance (AMR), ultimately improving patient outcomes and safeguarding public health.