Comparative researchers have heavily focused their studies of social cognition on species that live in large social groups, while neglecting other potential predictors of social cognition. African crested porcupines (Hystrix cristata) are relatively rare among mammals in that they are cooperative breeders that pair for life. Little is known about their social cognition, but they are good candidates for exploring cooperative behavior due to the need to coordinate behavior to cooperatively raise young. Cooperation, as defined in this study, is the process by which two or more participants perform independent actions on an object to obtain a reward for all parties. Humans are thought to outperform all other species in the frequency and magnitude of cooperative behaviors. Yet, only by studying a variety of species can researchers fully understand the likely selection pressures for cooperation, such as cooperative breeding. Here, we pilot tested the feasibility of the popular loose-string task with a mated pair of African crested porcupines, a task that required the porcupines to cooperatively pull ropes to access an out of reach platform baited with food rewards. Other species presented with this task were able to work together to receive rewards but did not always demonstrate understanding of the role of their partner. The porcupines achieved success but did not appear to coordinate their actions or solicit behavior from their partner. Thus, similar to other species, they may achieve success in this task without taking their partner’s role into account. This study demonstrates that the loose string task can be used to assess cooperation in porcupines. However, further experiments are needed to assess the porcupine’s understanding of their partner’s role under this paradigm.