Poly(acrylamide‐co‐itaconic acid) (AAm/IA) and poly(acrylamide‐co‐monomethoxyethyl itaconate) (AAm/MEI) hydrogels (HGs) synthesized at different molar ratios were used to study the adsorption of some metal ions as Cu2+, Ni2+, Pb2+, Cd2+, and Fe3+ in aqueous solutions at different concentration: 10, 50, 100, 500, and 1000 mg L−1. Statistical analysis was performed and the effect of the metal ion, ion concentration, and hydrogel (HG) composition, on adsorption and adsorption efficiency, was evaluated for both HGs studied (AAm/IA and AAm/MEI) and each factor gave rise to significant differences (P ≤ 0.05). The adsorption depends on the type of ion, its concentration, and also influenced by the type and composition of the HGs. For each system the adsorption efficiencies for all ions were similar with exception of Fe3+, which showed the highest adsorption efficiency in AAm/MEI HG, but the less for the AAm/IA. For both systems, the maximum adsorption efficiency was observed when the molar ratio AAm/IA or AAm/MEI is 80/20. When the adsorption was carried out with individual ions, AAm/MEI HG was more efficient than AAm/IA. For a multielement sample of Cu2+, Ni2+, Pb2+, and Cd2+, both HGs could adsorb all the ions and their behavioral trend was the same in both cases, in which the adsorption efficiency was Pb2+ > Cu2+ > Cd2+ > Ni2+. The results of the statistical analysis evidence the advantage of its use in this type of studies. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019, 136, 46999