Abstract:We study the zero location and the asymptotic behavior of iterated integrals of polynomials. Borwein-Chen-Dilcher's polynomials play an important role in this issue. For these polynomials we find their strong asymptotics and give the limit measure of their zero distribution. We apply these results to describe the zero asymptotic distribution of iterated integrals of ultraspherical polynomials with parameters (2α + 1)/2, α ∈ Z + .
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.