The University Course Timetabling Problem (UCTP) is a scheduling problem of assigning a teaching event in a certain time and room by considering the constraints of university stakeholders such as students, lecturers, and departments. This problem becomes complicated for universities with a large number of students and lecturers. Moreover, several universities are implementing student sectioning, which is a problem of assigning students to classes of a subject while respecting individual student requests, along with additional constraints. Such implementation also implies the complexity of constraints, which is larger accordingly. However, current and generic solvers have failed to meet the scalability and reliability requirements for student sectioning UCTP. In this paper, we introduce the localized island model genetic algorithm with dual dynamic migration policy (DM-LIMGA) to solve student sectioning UCTP. Our research shows that DM-LIMGA can produce a feasible timetable for the student sectioning problem and get better results than previous works and the current UCTP solver. Our proposed solution also consistently yield lower violation number than other algorithms, as evidenced by UCTP benchmark experiment results.