Motivated by recent results in Joint Source/Channel coding and decoding, we consider the decoding problem of Arithmetic Codes (AC). In fact, in this article we provide different approaches which allow one to unify the arithmetic decoding and error correction tasks. A novel length-constrained arithmetic decoding algorithm based on Maximum A Posteriori sequence estimation is proposed. The latter is based on soft-input decoding using a priori knowledge of the source-symbol sequence and the compressed bit-stream lengths. Performance in the case of transmission over an Additive White Gaussian Noise channel is evaluated in terms of Packet Error Rate. Simulation results show that the proposed decoding algorithm leads to significant performance gain while exhibiting very low complexity. The proposed soft input arithmetic decoder can also generate additional information regarding the reliability of the compressed bit-stream components. We consider the serial concatenation of the AC with a Recursive Systematic Convolutional Code, and perform iterative decoding. We show that, compared to tandem and to trellis-based Soft-Input Soft-Output decoding schemes, the proposed decoder exhibits the best performance/ complexity tradeoff. Finally, the practical relevance of the presented iterative decoding system is validated under an image transmission scheme based on the JPEG 2000 standard and excellent results in terms of decoded image quality are obtained.