Using high-pressure infrared methods, we have investigated close interactions of charge-enhanced C-H-O type in ionic liquid∕dimethyl sulfoxide (DMSO) mixtures. The solvation and association of the 1-butyl-3-methylimidazolium tetrafluoroborate (BMI(+)BF(4)(-)) and 1-butyl-2,3-dimethylimidazolium tetrafluoroborate (BMM(+)BF(4)(-)) in DMSO-d(6) were examined by analysis of C-H spectral features. Based on our concentration-dependent results, the imidazolium C-H groups are more sensitive sites for C-H-O than the alkyl C-H groups and the dominant imidazolium C-H species in dilute ionic liquid∕DMSO-d(6) should be assigned to the isolated (or dissociated) structures. As the dilute mixtures were compressed by high pressures, the loss in intensity of the bands attributed to the isolated structures was observed. In other words, high pressure can be used to perturb the association-dissociation equilibrium in the polar region. This result is remarkably different from what is revealed for the imidazolium C-H in the BMM(+)BF(4)(-)∕D(2)O mixtures. DFT-calculations are in agreement with our experimental results indicating that C(4)-H-O and C(5)-H-O interactions seem to play non-negligible roles for BMM(+)BF(4)(-)∕DMSO mixtures.