SUMMARYThis paper presents a systematic theoretical and numerical evaluation of three common block preconditioners in a Krylov subspace method for solving symmetric indefinite linear systems. The focus is on large-scale real world problems where block approximations are a practical necessity. The main illustration is the performance of the block diagonal, constrained, and lower triangular preconditioners over a range of block approximations for the symmetric indefinite system arising from large-scale finite element discretization of Biot's consolidation equations. This system of equations is of fundamental importance to geomechanics. Numerical studies show that simple diagonal approximations to the (1,1) block K and inexpensive approximations to the Schur complement matrix S may not always produce the most spectacular time savings when K is explicitly available, but is able to deliver reasonably good results on a consistent basis. In addition, the block diagonal preconditioner with a negative (2,2) block appears to be reasonably competitive when compared to the more complicated ones. These observation are expected to remain valid for coefficient matrices whereby the (1,1) block is sparse, diagonally significant (a notion weaker than diagonal dominance), moderately well-conditioned, and has a much larger block size than the (2,2) block.