“…, s(h 2 ) = κ (s(h 1 ), s((h 2 , * ))) = κ (s((h 1 , * )), s((h2 , * ))) = κ(s(h 1 ), s(h 2 )) = h 1 , h 2 H , κ s(h 1 ),s(h 2 ) = κ c(h 1 ) + s + (h 1 ), c(h 2 ) + s + (h 2 ) = κ s + (h 1 ), s + (h 2 ) = h 1 , h 2 H , κ s(h 1 ),s((h 2 , * )) = κ c(h 1 ) + s + (h 1 ), c(h 2 ) * + s − (h 2 ) = κ c(h 1 ), c(h 2 ) * = h 1 , h 2 H ,and κ s((h 1 , * )),s((h 2 , * )) = κ c(h 1 ) * + s − (h 1 ), c(h 2 ) * + s − (h 2 ) = κ s − (h 1 ), s − (h 2 ) = h 1 , h 2 H . At the end, for all h 1 , h 2 ∈ H ∪ (H × { * }), we have κ s(h 1 ), s(h 2 ) = κ s(h 1 ),s(h 2 ) .…”