Abstract:The geometric intrinsic approach to Hojman symmetry is developed and use is made of the theory of the Jacobi last multipliers to find the corresponding conserved quantity for non divergence-free vector fields. The particular cases of autonomous Lagrangian and Hamiltonian systems are studied as well as the generalization of these results to normalizer vector fields of the dynamics. The nonautonomous cases, where normalizer vector fields play a relevant role, are also developed.
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.