2021
DOI: 10.48550/arxiv.2106.12310
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Jacobi multipliers and Hojman symmetry

José F. Cariñena,
Manuel F. Rañada

Abstract: The geometric intrinsic approach to Hojman symmetry is developed and use is made of the theory of the Jacobi last multipliers to find the corresponding conserved quantity for non divergence-free vector fields. The particular cases of autonomous Lagrangian and Hamiltonian systems are studied as well as the generalization of these results to normalizer vector fields of the dynamics. The nonautonomous cases, where normalizer vector fields play a relevant role, are also developed.

Help me understand this report
View published versions

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 21 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?