We define and analyse the properties of contact Lie systems, namely systems of firstorder differential equations describing the integral curves of a t-dependent vector field taking values in a finite-dimensional Lie algebra of Hamiltonian vector fields relative to a contact structure. As a particular example, we study families of conservative contact Lie systems. Liouville theorems, contact reductions, and Gromov non-squeezing theorems are developed and applied to contact Lie systems. Our results are illustrated by examples with relevant physical and mathematical applications, e.g. Schwarz equations, Brockett systems, etcetera.