Magnetic resonance imaging (MRI) has revolutionized radiology in past four decades. MR image edge detection can identify anatomy boundaries and extract features for image analysis applications like segmentation and recognition of anatomy structures. Traditional MR image edge detection methods directly identify discontinuities in MR image domain without considering distribution of noise and aliasing artifact produced from MR scanner and reconstruction. It is difficult to suppress effects of noise and aliasing artifact during the edge detection process. In this project, a novel MR brain image edge detection method is proposed, which is based on parallel MRI reconstruction method. Distribution of noise and aliasing artifact is characterized by geometry factor map that also guides edge detection process for avoiding detection of noise and aliasing artifact. A collaborative learning strategy is applied on voting edges for producing the final edge detection. Experimental results show that the proposed method not only keep anatomy structure boundaries without missing edge components, but also avoid detection of noise and artifact with wrong edges.