2007
DOI: 10.1080/00927870601117613
|View full text |Cite
|
Sign up to set email alerts
|

Jacobson Radicals of Ore Extensions of Derivation Type

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1
1

Citation Types

1
19
0
1

Year Published

2009
2009
2017
2017

Publication Types

Select...
6
1

Relationship

3
4

Authors

Journals

citations
Cited by 18 publications
(21 citation statements)
references
References 7 publications
1
19
0
1
Order By: Relevance
“…Actually, one of our crucial steps, namely Lemma 5, is based on the smart argument of [1]. Other results in this direction can be found in [3,21,22,23,25,26]. We remark that the results here are false if |X| = 1.…”
Section: Corollary 2 Let R Be a Domain With The Extended Centroid Cmentioning
confidence: 84%
See 2 more Smart Citations
“…Actually, one of our crucial steps, namely Lemma 5, is based on the smart argument of [1]. Other results in this direction can be found in [3,21,22,23,25,26]. We remark that the results here are false if |X| = 1.…”
Section: Corollary 2 Let R Be a Domain With The Extended Centroid Cmentioning
confidence: 84%
“…Given a map φ : X → L, let R[X; φ] denote the ring of polynomials in noncommuting indeterminates x ∈ X and with coefficients in R subjected to the following commutation rule for a ∈ R and x ∈ X: xa = σ(a)x + δ(a), where δ = φ(x) is a σ-derivation. [4,6,25,26].) We stress here that the indeterminates x ∈ X do not commute with each other.…”
Section: Introduction and Resultsmentioning
confidence: 99%
See 1 more Smart Citation
“…We also note that the Jacobson radical of a ring R[x; D] in the case when R has no nil ideals was investigated by P. Grzeszczuk and J. Bergen [9]. For other results on such rings, see [18,31]. Interesting results in the case where R is a polynomial identity ring were obtained by J.…”
Section: Introductionmentioning
confidence: 86%
“…No caso em que L = k · x é uma álgebra de Lie unidimensional, temos que R * U (L) = R[x; δ], onde δ(r) = [x, r] é a ação de x ∈ L em r ∈ R. Segue, portanto, que o Teorema de Amitsur vale se uma das condições anteriores for satisfeita. Em 2015, A. Smoktunowicz provou que se R é uma álgebra sobre um corpo de característica positiva e δ é uma derivação fr R localmente nilpotente, ou seja, se para todo r ∈ R existir um inteiro positivo n tal que δ n (r) [TWC07] provaram que o problema tem resposta afirmativa em alguns casos particulares, dentre eles quando R é um anel PI ou quando R satisfaz a condição de cadeia ascendente sobre os anuladores à direita de seus subconjuntos unitários. Recentemente, outras condições suficientes foram provadas em [BG12] e [NI14].…”
Section: Introductionunclassified