The Hnf1b-CreERT2 BAC transgenic (Tg(Hnf1b-cre/ERT2)1Jfer) has been used extensively to trace the progeny of pancreatic ducts in development, regeneration, or cancer. This model originally showed that duct-like plexus cells of the embryonic pancreas are bipotent duct-endocrine progenitors, whereas adult mouse duct cells are not a common source of δ cells in various regenerative settings. We have now examined Hnf1b-CreERT2 mice with a Rosa26-RFP reporter transgene. This showed inducible recombination of up to 96% adult duct cells, a much higher efficiency than the previously used β-galactosidase reporter. Despite this high duct-cell excision, recombination in α and β cells remained very low, similar to the previously used reporter transgene (Rosa26-βgalactosidase). However, nearly half of somatostatin-expressing δ cells showed reporter activation, which was due to Cre expression in δ cells rather than an indication of duct to δ cell conversions. The high recombination efficiency in duct cells indicates that the Hnf1b-CreERT2 model can be useful for both ductal fate mapping and genetic inactivation studies. The recombination in δ cells does not modify the interpretation of studies that failed to show duct conversions to other cell types, but needs to be considered in studies that use this model to modify the plasticity of pancreatic duct cells.