Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Activation Functions are crucial parts of the Deep Learning Artificial Neural Networks. From the Biological point of view, a neuron is just a node with many inputs and one output. A neural network consists of many interconnected neurons. It is a “simple” device that receives data at the input and provides a response. The function of neurons is to process and transmit information; the neuron is the basic unit in the nervous system. Carly Vandergriendt (2018) stated the human brain at birth consists of an estimated 100 billion Neurons. The ability of a machine to mimic human intelligence is called Machine Learning. Deep Learning Artificial Neural Networks was designed to work like a human brain with the aid of arbitrary choice of Non-linear Activation Functions. Currently, there is no rule of thumb on the choice of Activation Functions, “Try out different things and see what combinations lead to the best performance”, however, sincerely; the choice of Activation Functions should not be Trial and error. Jamilu (2019) proposed that Activation Functions shall be emanated from AI-ML-Purified Data Set and its choice shall satisfy Jameel’s ANNAF Stochastic and or Deterministic Criterion. The objectives of this paper are to propose instances where Deep Learning Artificial Neural Networks are SUPERINTELLIGENT. Using Jameel’s ANNAF Stochastic and or Deterministic Criterion, the paper proposed four classes where Deep Learning Artificial Neural Networks are Superintelligent namely; Stochastic Superintelligent, Deterministic Superintelligent, and Stochastic-Deterministic 1st and 2nd Levels Superintelligence. Also, a Normal Probabilistic-Deterministic case was proposed.
Activation Functions are crucial parts of the Deep Learning Artificial Neural Networks. From the Biological point of view, a neuron is just a node with many inputs and one output. A neural network consists of many interconnected neurons. It is a “simple” device that receives data at the input and provides a response. The function of neurons is to process and transmit information; the neuron is the basic unit in the nervous system. Carly Vandergriendt (2018) stated the human brain at birth consists of an estimated 100 billion Neurons. The ability of a machine to mimic human intelligence is called Machine Learning. Deep Learning Artificial Neural Networks was designed to work like a human brain with the aid of arbitrary choice of Non-linear Activation Functions. Currently, there is no rule of thumb on the choice of Activation Functions, “Try out different things and see what combinations lead to the best performance”, however, sincerely; the choice of Activation Functions should not be Trial and error. Jamilu (2019) proposed that Activation Functions shall be emanated from AI-ML-Purified Data Set and its choice shall satisfy Jameel’s ANNAF Stochastic and or Deterministic Criterion. The objectives of this paper are to propose instances where Deep Learning Artificial Neural Networks are SUPERINTELLIGENT. Using Jameel’s ANNAF Stochastic and or Deterministic Criterion, the paper proposed four classes where Deep Learning Artificial Neural Networks are Superintelligent namely; Stochastic Superintelligent, Deterministic Superintelligent, and Stochastic-Deterministic 1st and 2nd Levels Superintelligence. Also, a Normal Probabilistic-Deterministic case was proposed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.