Systemic lupus erythematosus (SLE) is an autoimmune disorder known for its complex pathogenesis, in which cytokines play an essential role. It seems that the modulation of these cytokines may impact disease progression, being considered potential biomarkers. Thus, TNF (tumor necrosis factor)-α and IL (interleukin)-17 are molecules of great interest in SLE. TNF-α plays a dual role in SLE, with both immunosuppressive and proinflammatory functions. The role of IL-17 is clearly described in the pathogenesis of SLE, having a close association with IL-23 in stimulating the inflammatory response and consecutive tissue destruction. It appears that patients with elevated levels of these cytokines are associated with high disease activity expressed by the SLE disease activity index (SLEDAI) score, although some studies do not confirm this association. However, TNF-α and IL-17 are found in increased titers in lupus patients compared to the general population. Whether inhibition of these cytokines would lead to effective treatment is under discussion. In the case of anti-TNF-α therapies in SLE, the possibility of ATIL (anti-TNF-induced lupus) is a serious concern that limits their use. The use of anti-IL-17 therapies in SLE is a promising option, but not yet approved. Future studies of these cytokines in large cohorts will provide valuable information for the management of SLE.