2012
DOI: 10.1089/dia.2011.0202
|View full text |Cite
|
Sign up to set email alerts
|

Java-Based Diabetes Type 2 Prediction Tool for Better Diagnosis

Abstract: Background: The concept of classification of clinical data can be utilized in the development of an effective diagnosis system by taking the advantage of computational intelligence. Diabetes disease diagnosis via proper interpretation of the diabetes data is an important problem in neural networks. Unfortunately, although several classification studies have been carried out with significant performance, many of the current methods often fail to reach out to patients. Graphical user interface-enabled tools need… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
8
0
2

Year Published

2012
2012
2019
2019

Publication Types

Select...
4
3

Relationship

1
6

Authors

Journals

citations
Cited by 12 publications
(10 citation statements)
references
References 17 publications
0
8
0
2
Order By: Relevance
“…Second, the algorithm used the mixture of experts approach that has shown significant improvements in the prediction problem. This study demonstrated that the algorithm reached and accuracy of 99.36% in the Indian dataset compared with 97% in an earlier study (using a Pima Indian diabetes dataset) [12].…”
Section: Discussionmentioning
confidence: 48%
See 2 more Smart Citations
“…Second, the algorithm used the mixture of experts approach that has shown significant improvements in the prediction problem. This study demonstrated that the algorithm reached and accuracy of 99.36% in the Indian dataset compared with 97% in an earlier study (using a Pima Indian diabetes dataset) [12].…”
Section: Discussionmentioning
confidence: 48%
“…1000 EM iterations and 20 hidden nodes reached an accuracy of 89.28% 3. 1100 EM iterations and 20 hidden nodes reached the overall best accuracy of 96.9% [12].…”
Section: Discussionmentioning
confidence: 97%
See 1 more Smart Citation
“…Estes resultados confirmam a instalação W|ávâááûÉ | 84 do DM, validando o modelo de estudo de acordo com pesquisas recentes Hu et al, 2013;Du et al, 2014). Existem diversas formas de indução experimental do DM descritas na literatura, tais como: infecções virais, pancreatectomia parcial, uso de hormônios anti-insulínicos, uso excessivo de hidrocortisona (hormônio adenocorticotrófico), o aloxano e a STZ (Tominaga, 2007;Shankaracharya et al, 2012). Neste estudo, optou-se pelo uso da droga STZ.…”
Section: Avaliação Clínicaunclassified
“…Los algoritmos de aprendizaje escogidos han sido el árbol de decisión C4.5 (Quinlan, J. Ross, 1993) y la red neuronal con la arquitectura perceptrón multicapa (MLP) (Haykin, S. S., 1994). La elección de estos dos algoritmos se debe a que ambos han sido probados amplia y satisfactoriamente en el dominio de la diabetes para diferentes propósitos, predicción de glucemias (Pérez-Gandía et al, 2010), diagnosis de retinopatía diabética (Bourouis et al, 2014), metabolismo de la intolerancia de la glucosa o identificación de DM2 (Möhlig et al, 2006;Hische et al, 2010;Shankaracharya et al, 2012;Upadhyaya, Farahmand and Baker-Demaray, 2013) o para identificar factores que influyan en el control diabético (Huang et al, 2007). Aunque todavía no habían sido aplicados a la clasificación de glucemias en intervalos de ingesta.…”
Section: D) Diseño Del Clasificadorunclassified