The interaction of a turbulent round jet with the free surface was investigated experimentally. Flow visualization, free-surface curvature measurements and hot-film velocity measurements were used to study this flow. It is shown that surface waves are generated by the large-scale vortical structures in the jet flow as they interact with the free surface. These waves propagate at an angle with respect to the flow direction which increases as the Froude number is increased. Propagation of the waves in the flow direction is suppressed by the surface current produced by the jet. Farther downstream the surface motions are caused by the large-scale vortical structures. Characteristic dark circular features are observed in shadowgraph images associated with concentrated vorticity normal to the free surface. The normal vorticity is believed to be the result of vortex line reconnection processes in the turbulent flow. Measurements of the mean velocity and turbulence intensity are reported. Owing to the confinement by the free surface, the decay rate of the maximum mean velocity is reduced by a factor of √2 compared to an unconfined jet.