Abstract. The Tile Calorimeter (TileCal) of the ATLAS experiment at the LHC is the central hadronic calorimeter designed for energy reconstruction of hadrons, jets, tauparticles and missing transverse energy. TileCal is a scintillator-steel sampling calorimeter and it covers the region of pseudo-rapidity up to 1.7, with almost 10000 channels measuring energies ranging from ∼30 MeV to ∼2 TeV. Each stage of the signal production, from scintillation light to the signal reconstruction, is monitored and calibrated.The performance of the Tile calorimeter has been studied in-situ employing cosmic ray muons and a large sample of proton-proton collisions, acquired during the operations of the LHC. Prompt isolated muons of high momentum from electroweak bosons decays are employed to study the energy response of the calorimeter at the electromagnetic scale. The calorimeter response to hadronic particles is evaluated with a sample of isolated hadrons. The modelling of the response by the Monte Carlo simulation is discussed. The calorimeter timing calibration and resolutions are studied with a sample of multijets events. Results on the calorimeter operation and performance are presented, including the calibration, stability, absolute energy scale, uniformity and time resolution. TileCal performance satisfies the design requirements and has provided an essential contribution to physics results in ATLAS.The Large Hadron Collider (LHC) has envisaged a series of upgrades towards a High Luminosity LHC (HL-LHC), delivering five times the LHC nominal instantaneous luminosity. The ATLAS Phase II upgrade, in 2024, will accommodate the detector and data acquisition system for the HL-LHC. In particular, the Tile Calorimeter will undergo a major replacement of its on-and off-detector electronics. All signals will be digitised and then transferred directly to the off-detector electronics, where the signals will be reconstructed, stored, and sent to the first level of trigger at a rate of 40 MHz. This will provide better precision for the calorimeter signals used by the trigger system and will allow the development of more complex trigger algorithms. Changes to the electronics will also contribute to the reliability and redundancy of the system. Three different front-end options are presently being investigated for the upgrade. Results of extensive laboratory tests and with beams of the three options will be presented, as well as the latest results on the development of the power distribution and the off-detector electronics.