The problem of separated flow in bends of arbitrary turning angles has been examined. The method of analysis is based on the inviscid flow theory coupled with Kirchhoff’s separation model. The physical flow problem is first transformed to the hodograph domain, and then into a rectangular computational region using properly selected flow parameters. The solution is first established in the hodograph plane. The final flow pattern including the inner and outer walls of the bend, the separation streamline, and other flow properties in the physical plane are subsequently obtained through direct integration. The results of the present analysis are compared with those of Lichtarowicz and Markland as well as Mankbadi and Zaki.