Ferroptosis is a form of regulated cell death triggered by the iron‐dependent peroxidation of phospholipids. Interactions of iron and lipid metabolism factors jointly promote ferroptosis. Ferroptosis has been demonstrated to be involved in the development of various diseases, such as tumors and degenerative diseases (e.g., aortic dissection), and targeting ferroptosis is expected to be an effective strategy for the treatment of these diseases. Recent studies have shown that the regulation of ferroptosis is affected by multiple mechanisms, including genetics, epigenetics, posttranscriptional modifications, and protein posttranslational modifications. Epigenetic changes have garnered considerable attention due to their importance in regulating biological processes and potential druggability. There have been many studies on the epigenetic regulation of ferroptosis, including histone modifications (e.g., histone acetylation and methylation), DNA methylation, and noncoding RNAs (e.g., miRNAs, circRNAs, and lncRNAs). In this review, we summarize recent advances in research on the epigenetic mechanisms involved in ferroptosis, with a description of RNA N6‐methyladenosine (m6A) methylation included, and the importance of epigenetic regulation in biological processes and ferroptosis‐related diseases, which provides reference for the clinical application of epigenetic regulators in the treatment of related diseases by targeting ferroptosis.