Platelets are valuable, but highly perishable, blood components used in the treatment of, among others, viral dengue fever, blood-related illness, and post-chemotherapy following cancer. Given the short shelf-life of 3–5 days and a highly volatile supply and demand pattern, platelet inventory allocation is a challenging task. This is especially prevalent in emerging economies where demand variability is more pronounced due to neglected tropical diseases, and a perpetual shortage of supply. The consequences of which have given rise to an illegal ‘red market’. Motivated by experience at a regional hospital in India, we investigate the problem of platelet allocation among three priority-differentiated demand streams. Specifically we consider a central hospital which, in addition to internal emergency and non-emergency requests, faces external demand from local clinics. We analyze the platelet allocation decision from a social planner’s perspective and propose an allocation heuristic based on revenue management (RM) principles. The objective is to maximize total social benefit in a highly supply-constrained environment. Using data from the aforementioned Indian hospital as a case study, we conduct a numerical simulation and sensitivity analysis to evaluate the allocation heuristic. The performance of the RM-based policy is evaluated against the current sequential first come, first serve policy and two fixed proportion-based rationing policies. It is shown that the RM-based policy overall dominates, serves patients with the highest medical urgency better, and can curtail patients’ need to procure platelets from commercial sources.