Abstract-In this paper, we introduce an efficient iterative solver for the joint linear-programming (LP) decoding of lowdensity parity-check (LDPC) codes and finite-state channels (FSCs). In particular, we extend the approach of iterative approximate LP decoding, proposed by Vontobel and Koetter and explored by Burshtein, to this problem. By taking advantage of the dual-domain structure of the joint decoding LP, we obtain a convergent iterative algorithm for joint LP decoding whose structure is similar to BCJR-based turbo equalization (TE). The result is a joint iterative decoder whose complexity is similar to TE but whose performance is similar to joint LP decoding. The main advantage of this decoder is that it appears to provide the predictability of joint LP decoding and superior performance with the computational complexity of TE.