Images are often corrupted by noise in the procedures of image acquisition and transmission. It is a challenging work to design an edge-preserving image denoising scheme. Extended discrete Shearlet transform (extended DST) is an effective multi-scale and multi-direction analysis method; it not only can exactly compute the Shearlet coefficients based on a multiresolution analysis, but also can represent images with very few coefficients. In this paper, we propose a new image denoising approach in extended DST domain, which combines hidden Markov tree (HMT) model and Bessel K Form (BKF) distribution. Firstly, the marginal statistics of extended DST coefficients are studied, and their distribution is analytically calculated by modeling extended DST coefficients with BKF probability density function. Then, an extended Shearlet HMT model is established for capturing the intra-scale, inter-scale, and cross-orientation coefficients dependencies. Finally, an image denoising approach based on the extended Shearlet HMT model is presented. Extensive experimental results demonstrate that our extended Shearlet HMT denoising approach can obtain better performances in terms of both subjective and objective evaluations than other state-of-theart HMT denoising techniques. Especially, the proposed approach can preserve edges very well while removing noise.