2024
DOI: 10.1117/1.jei.33.2.023043
|View full text |Cite
|
Sign up to set email alerts
|

Joint global feature and part-based pyramid features for unsupervised person re-identification

De Zhang,
Haoming Fan,
Xiaoping Zhou
et al.

Abstract: In recent years, unsupervised person re-identification (re-ID) has attracted a lot of attention because it can save manual annotation costs and adapt to new scenes more conveniently in real-world applications. We focus on fully unsupervised learning-based re-ID, which aims to train a discriminative model based on unlabeled person images. In unsupervised learning, we need to generate pseudo labels by clustering convolutional features and then train convolutional neural network (CNN) models with these pseudo lab… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 39 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?