Abstract:The unique characteristics of perishable agri-products are a short lifespan and rapid quality deterioration. This establishes the need to significantly reduce the time from harvest to distribution. These features require reducing the processing time from harvest to distribution to being as short as possible. In this study, we focus on an integrated perishable agri-products scheduling problem that combines harvest and distribution simultaneously, with the purpose of reducing processing time and quality decay. We propose this problem as a mixed integer nonlinear programming model (MINLP) to optimize the harvest time and the vehicle routing to consumers, and this MINIP is formulated as a vehicle routing problem with time windows (VRPTW). We introduce a big M method to transform the nonlinear model into a linear model, then apply CPLEX to solve the transformed model. Numerical experiments and sensitive analysis are conducted to verify the efficiency of the proposed model and to provide managerial insights.