In order to overcome the shortcomings of existing medium access control (MAC) protocols based on TDMA or CDMA in satellite networks, interleave division multiple access (IDMA) technique is introduced into satellite communication networks. Therefore, a novel wide-band IDMA MAC protocol based on channel quality is proposed in this paper, consisting of a dynamic power allocation algorithm, a rate adaptation algorithm, and a call admission control (CAC) scheme. Firstly, the power allocation algorithm combining the technique of IDMA SINR-evolution and channel quality prediction is developed to guarantee high power efficiency even in terrible channel conditions. Secondly, the effective rate adaptation algorithm, based on accurate channel information per timeslot and by the means of rate degradation, can be realized. What is more, based on channel quality prediction, the CAC scheme, combining the new power allocation algorithm, rate scheduling, and buffering strategies together, is proposed for the emerging IDMA systems, which can support a variety of traffic types, and offering quality of service (QoS) requirements corresponding to different priority levels. Simulation results show that the new wide-band IDMA MAC protocol can make accurate estimation of available resource considering the effect of multiuser detection (MUD) and QoS requirements of multimedia traffic, leading to low outage probability as well as high overall system throughput.