Airborne particles, which include desert and soil dust, wildfire smoke, sea salt, volcanic ash, black carbon, natural and anthropogenic sulfate, nitrate, and organic aerosol, affect Earth's climate, in part by reflecting and absorbing sunlight. This paper reviews current status, and evaluates future prospects for reducing the uncertainty aerosols contribute to the energy budget of Earth, which at present represents a leading factor limiting the quality of climate predictions. Information from satellites is critical for this work, because they provide frequent, global coverage of the diverse and variable atmospheric aerosol load.Both aerosol amount and type must be determined. Satellites are very close to measuring aerosol amount at the level-of-accuracy needed, but aerosol type, especially how bright the airborne particles are, cannot be constrained adequately by current techniques. However, satellite instruments can map out aerosol air mass type, which is a qualitative classification rather than a quantitative measurement, and targeted suborbital measurements can provide the required particle property detail. So combining satellite and suborbital measurements, and then using this combination to constrain climate models, will produce a major advance in climate prediction. Abstract Direct aerosol radiative forcing (DARF) remains a leading contributor to climate prediction uncertainty. To monitor the spatially and temporally varying global atmospheric aerosol load, satellite remote sensing is required. Despite major advances in observing aerosol amount, type, and distribution from space, satellite data alone cannot provide enough quantitative detail, especially about aerosol microphysical properties, to effect the required improvement in estimates of DARF and the anthropogenic component of DARF. However, the combination of space-based and targeted suborbital measurements, when used to constrain climate models, represents an achievable next step likely to provide the needed advancement.