Relation classification is an important research area in the field of natural language processing (NLP), which aims to recognize the relationship between two tagged entities in a sentence. The noise caused by irrelevant words and the word distance between the tagged entities may affect the relation classification accuracy. In this paper, we present a novel model multi-head attention long short term memory (LSTM) network with filter mechanism (MALNet) to extract the text features and classify the relation of two entities in a sentence. In particular, we combine LSTM with attention mechanism to obtain the shallow local information and introduce a filter layer based on attention mechanism to strength the available information. Besides, we design a semantic rule for marking the key word between the target words and construct a key word layer to extract its semantic information. We evaluated the performance of our model on SemEval-2010 Task8 dataset and KBP-37 dataset. We achieved an F1-score of 86.3% on SemEval-2010 Task8 dataset and F1-score of 61.4% on KBP-37 dataset, which shows that our method is superior to the previous state-of-the-art methods.